## Further Calculus I Cheat Sheet

## Improper Integrals (A Level Only)

## Integrals With Undefined Points

When integrating a function over an interval, it is possible that it will be undefined at one or more points within it This point could be at either end of the interval, or somewhere in the middle. For example, the function $f(x)=\frac{1}{x}$ is undefined at the point $x=0-$ and so the integral $\int_{0}^{31} \frac{-1}{x} d x$ is improper.

To tackle these types of questions the point at which the function is undefined, say at $x=k$, is replaced by a variable, say $b$, and the limit $b \rightarrow k$ is taken. For an integral $\int_{a}^{\ell} f(x) d x$, if the point at which $f(x)$ is undefined is at the beginning of the interval, when $x=a$, the following limit is calculated:

$$
\int_{a}^{c} f(x) d x=\lim _{b \rightarrow a} \int_{b}^{c} f(x) d x .
$$

Similarly, if $f(x)$ is undefined at the upper limit, the limit $b \rightarrow c$ is taken:

$$
\int_{a}^{c} f(x) d x=\lim _{b \rightarrow c} \int_{a}^{b} f(x) d x .
$$

When the integrand is undefined at $x=k$ between the integration limits, the following result is used:

$$
\int_{a}^{c} f(x) d x=\lim _{b \rightarrow k} \int_{a}^{b} f(x) d x+\lim _{b \rightarrow k} \int_{b}^{c} f(x) d x
$$

The integral is split into two, and a limit taken for each. The first takes the limit $b \rightarrow k$ 'from below' and the second 'from above'.
Example 1: Evaluate the integral $\int_{0}^{10} \frac{1}{\sqrt[3]{x-8}} d x$.
This is the graph of
$y=\frac{1}{\sqrt[3]{x-8}}$
along with the line $x=8$.
The point where the function
is undefined can be seen
here as the point at which
the graph 'jumps' from being

| below the $x$-axis to above it. |
| :--- |
| This integral is improper as it |

is undefined at the point
$x=8$, leading to division by
zero. Therefore, it is split
into two integrals at $x=8$
into two integrals at $x=8$, for both.
Evaluate each integral separately. It can be useful to rewrite the integrands with indices. Leave the
answers in terms of $b$ for now, ready for the limit to be taken in the next step.

Evaluate each limit and sum them together to arrive at
the final answer, leaving it the simplest possible form.

$$
\begin{aligned}
& \int_{0}^{10} \frac{1}{\sqrt[3]{x-8}} d x=\lim _{b \rightarrow 3} \int_{0}^{b} \frac{1}{\sqrt[2]{x-8}} d x+\lim _{b \rightarrow 8_{b}} \int_{b}^{10} \frac{1}{\sqrt[3]{x-8}} d x \\
& \begin{aligned}
\int_{0}^{b} \frac{1}{\sqrt[3]{x-8}} d x=\int_{0}^{b}(x-8)^{-\frac{1}{3}} d x=\left[\frac{3}{2}(x-8)^{\frac{2}{3}}\right]_{0}^{b} \\
\left.=\frac{3}{2}(b-8)^{\frac{2}{3}}-(-8)^{\frac{2}{3}}\right) \\
\int_{b}^{10} \frac{1}{\sqrt[3]{x-8}} d x=\int_{b}^{10}(x-8)^{-\frac{1}{3}} d x=\left[\frac{3}{2}(x-8)^{\frac{2}{3}}\right]_{b}^{10} \\
\left.=\frac{3}{2}(2)^{\frac{2}{3}}-(b-8)^{\frac{2}{3}}\right)
\end{aligned} \\
& \begin{aligned}
\int_{0}^{b} \frac{1}{\sqrt[3]{x-8}} d x=\int_{0}^{b}(x-8)^{-\frac{1}{3}} d x=\left[\frac{3}{2}(x-8)^{\frac{2}{3}}\right]_{0}^{b} \\
\left.=\frac{3}{2}(b-8)^{\frac{2}{3}}-(-8)^{\frac{2}{3}}\right) \\
\int_{b}^{10} \frac{1}{\sqrt[3]{x-8}} d x=\int_{b}^{10}(x-8)^{-\frac{1}{3}} d x=\left[\frac{3}{2}(x-8)^{\frac{2}{3}}\right]_{b}^{10} \\
\left.=\frac{3}{2}(2)^{\frac{2}{3}}-(b-8)^{\frac{2}{3}}\right)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\int_{0}^{b} \frac{1}{\sqrt[3]{x-8}} d x=\int_{0}^{b}(x-8)^{-\frac{1}{3}} d x=\left[\frac{3}{2}(x-8)^{\frac{2}{3}}\right]_{0}^{b} \\
\left.=\frac{3}{2}(b-8)^{\frac{2}{3}}-(-8)^{\frac{2}{3}}\right) \\
\int_{b}^{10} \frac{1}{\sqrt[3]{x-8}} d x=\int_{b}^{10}(x-8)^{-\frac{1}{3}} d x=\left[\frac{3}{2}(x-8)^{\frac{2}{3}}\right]_{b}^{10} \\
\left.=\frac{3}{2}(2)^{\frac{2}{3}}-(b-8)^{\frac{2}{3}}\right)
\end{aligned} \\
& \lim _{b=3} \int_{0}^{b} \frac{1}{\sqrt{x}-8} d x=\lim _{t \rightarrow 2}^{3}\left((b-8)^{2}-(-88)^{2}\right)=-\frac{3}{2}(-8)^{2}=-6 \\
& \lim _{b \rightarrow-9} \int_{0}^{10} \frac{1}{\sqrt[3]{x}-8} d x=\lim _{b \rightarrow-9}^{\frac{3}{2}}\left((2)^{2}-(b-8)^{\frac{2}{1}}\right)=\frac{3}{2}(2)^{\frac{2}{2}}=\frac{3}{\sqrt[3]{2}} \\
& \int_{0}^{10} \frac{1}{\sqrt[1]{x-8}} d x=\lim _{b \rightarrow 3}^{b} \int_{0}^{b} \frac{1}{\sqrt{x-8}} d x+\lim _{b=0_{0}}^{10} \frac{1}{\sqrt[1]{x-8}} d x=\frac{3}{\sqrt[3]{2}}-6
\end{aligned}
$$



## Integrals With an Infinite Rang

Sometimes one, or both, of the limits of integration will extend to infinity, with the upper limit approachin $+\infty$ and the lower $-\infty$. In certain cases, the integral will still be a finite number. If so, the integral is said to converge. If not, it is said to diverge.

As in the previous case, the infinite limit is replaced by a variable, say $b$, and then the limit $b \rightarrow \pm \infty$ is considered. To evaluate the improper integral $\int_{a}^{\infty} f(x) d x$, the following limit is evaluated:

$$
\int_{a}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x=\lim _{b \rightarrow \infty}\{I(b)-I(a)\}
$$

where $I(a)$ and $I(b)$ are the integral evaluated at $x=a$ and $x=b$ respectively. If the lower limit is $-\infty$, a similar approach is used, where we consider the limit as $a \rightarrow-\infty$. If both limits have an infinite range, the
following is evaluated: following is evaluated:

$$
\int_{-\infty}^{\infty} f(x) d x=\lim _{b \rightarrow-\infty} \int_{b}^{0} f(x) d x+\lim _{b \rightarrow \infty} \int_{0}^{b} f(x) d x .
$$

Example 2: Evaluate the integral $\int_{\frac{5}{2}}^{\infty} e^{-\frac{x}{6}}-\frac{1}{(2-x)^{3}} d x$.

```
The graph of
\(y=e^{-\frac{x}{6}}-\quad 1\)
As \(x\) becomes larger, the
graph flattens quickly,
graph flattens quickly,
indicating that the area
inder the curve, and so
the integral, will
converge to a finite
number. This function is
undefined at \(x=2\),
hence the steep increase
This integral is improper
since its uper limit
exte its upper limit
extends to infinity, an
extends to infinity, and
so this limit is replaced
so this limit is replaced
by the variable \(b\). Since
he owert where the
function is undefined
avoided.
Evaluate each integral
separately. The limits of
each of these results are
five the final answer.
This answer can be
found by remembering
that \(\lim e^{-x}=0\) and
\(\lim x^{x \rightarrow-\infty}=0\).
```



$$
\begin{gathered}
\int_{\frac{5}{2}}^{\infty} e^{-\frac{x}{6}}-\frac{1}{(2-x)^{3}} d x=\lim _{b \rightarrow \infty} \int_{\frac{5}{2}}^{b} e^{-\frac{x}{6}} \frac{1}{(2-x)^{3}} d x \\
=\lim _{b \rightarrow \infty} \int_{\frac{5}{2}}^{b} e^{-\frac{x}{6}} d x-\lim _{b \rightarrow \infty} \int_{\frac{5}{2}}^{b} \frac{1}{(2-x)^{3}} d x
\end{gathered}
$$

$$
\begin{aligned}
& \int_{\frac{5}{2}}^{b} \frac{-\frac{x}{d x}}{d x}=-6\left[e^{\frac{-x}{b}}\right]_{\frac{5}{2}}^{b}=-6\left(e^{\left.-\frac{b}{8}-e^{-\frac{5}{12}}\right)}\right. \\
& \int_{\frac{1}{2}}^{0} \frac{1}{(2-x)^{d x}}=\frac{1}{2}\left(\frac{1}{2(2-x)}\right]_{\frac{1}{2}}^{0}-\frac{1}{2}\left(\frac{1}{(2-b)^{2}}-4\right)
\end{aligned}
$$

$$
\begin{aligned}
& =2\left(3 e^{-\frac{5}{12}}+1\right)
\end{aligned}
$$

Extremal Limits of Polynomial-Exponential and Polynomial-Logarithm Functions (A Level Only)
When evaluating improper integrals, the following two results are often used:

## $\lim _{x \rightarrow \infty} x^{k} e^{-x}=0$

$\lim _{x \rightarrow 0} x^{k} \ln (x)=0$.
These two relations are examples of an extremal limit of a polynomial-exponential function and of a polynomial-Iogarithm function respectively. These limits are often used to evaluate the limits used in improper integrals.

Example 3: Evaluate $\int_{0}^{\infty} 4 x e^{-6 x} d x$

| This integral is improper as the upper limit is infinite. So, the infinite limit is replaced by $b$ and the limit $b \rightarrow \infty$ is taken. | $\int_{0}^{\infty} 4 x e^{-6 x} d x=\lim _{b \rightarrow \infty} \int_{0}^{b} 4 x e^{-6 x} d x .$ |
| :---: | :---: |
| Evaluate the integral using integration by parts. Differentiating the $4 x$ and integrating the $e^{-6 x}$ will lead to a simpler integral. | $\begin{gathered} u=4 x, \frac{d v}{d x}=e^{-6 x} \Rightarrow \frac{d u}{d x}=4, v=\frac{-e^{-6 x}}{6} . \\ \int_{0}^{b} 4 x e^{-6 x} d x=\left[-\frac{4 x e^{-6 x}}{6}\right]_{0}^{b}+\frac{4}{6} \int_{0}^{b} e^{-6 x} d x \end{gathered}$ |
|  | $\begin{aligned} & =\left[-\frac{4 x e^{-6 x}}{6}-\frac{4}{36} e^{-6 x}\right]_{0}^{b} \\ = & -\frac{4 b e^{-6 b}}{6}-\frac{4}{36} e^{-6 b}+\frac{4}{36} \end{aligned}$ |

Finally, take the limit of the result of the integral to get to the final answer. This include the use of the limit:

## with $k \stackrel{\lim _{x \rightarrow \infty} \text {. } . ~ . ~ . ~}{\text {. }}$

$$
\left.\begin{array}{c}
\lim _{b \rightarrow \infty} \int_{0}^{b} 4 x e^{-6 x} d x=\lim _{b \rightarrow \infty}\left(-\frac{4}{6} b e^{-6 b}-\frac{4}{36} e^{-6 b}+\frac{4}{36}\right) \\
=0
\end{array}\right)+0+\frac{4}{36}=\frac{4}{36}=\frac{1}{9} .
$$

Example 4: Evaluate $\int_{0}^{4} x^{2} \ln (x) d x$
Since the point at which the
lower limit of integration, the
variable $b$ replaces it and the
limit $b \rightarrow 0$ is taken
$\int_{0}^{4} x^{2} \ln (x) d x=\lim _{b \rightarrow 0} \int_{b}^{4} x^{2} \ln (x) d x$
Perform integration by parts
to evaluate this integral.
rather than $x^{2}$ will lead to
$u=\ln (x), \frac{d v}{d x}=x^{2} \Rightarrow \frac{d u}{d x}=\frac{1}{x}, v=\frac{x^{3}}{3}$
rather than $x^{2}$
simple integral.

$$
\begin{gathered}
\int_{b}^{4} x^{2} \ln (x) d x=\left[\frac{1}{3} x^{3} \ln (x)\right]_{b}^{4}-\int_{b}^{4} \frac{1}{3} x^{2} d x \\
=\left[\frac{1}{3} x^{3} \ln (x)-\frac{x^{3}}{9}\right]_{b}^{4}=\frac{64}{3} \ln (4)-\frac{64}{9}-\frac{b^{3}}{3} \ln (b)+\frac{b^{3}}{9}
\end{gathered}
$$

Take the limit $b \rightarrow 0$. The
result $\lim _{x \rightarrow x} \ln \ln (x)=0$ is
used here, with $k=3$.
$\lim _{b \rightarrow 0} \int_{b}^{4} x^{2} \ln (x) d x=\lim _{b \rightarrow 0}\left(\frac{64}{3} \ln (4)-\frac{64}{9}-\frac{b^{3}}{3} \ln (b)+\frac{b^{3}}{9}\right)$ $=\frac{64}{3} \ln (4)-\frac{64}{9}$
$\int_{0}^{4} x^{2} \ln (x) d x=\frac{64}{3} \ln (4)-\frac{64}{9}$

